
1

Searching the Variability Space to
Fix Model Inconsistencies:
A Preliminary Assessment

Roberto E. Lopez-Herrejon, Alexander Egyed
Johannes Kepler University Linz, Austria

{roberto.lopez, alexander.egyed}@jku.at

2

Introduction

 Software Product Lines (SPL)
 Families of related systems distinguished by the features
 Extensive success in achieving software reuse
 Variability

• The capacity of software artifacts to change
• Its effective management is at the core of SPL

 Model-Driven Engineering (MDE)
 Emerging software development paradigm
 Raises the level of abstraction and automates program generation

3

Motivation

 Fact
 Increasing research convergence in SPL and MDE that leverages

their complementary capabilities

 Challenge
 Maintain consistency between models with variability

• Checking that certain relations between model elements hold for all
products of a SPL

 Problem
 Research has focused on inconsistency detection
 Inconsistency fixing has not been fully explored

4

Why Search-Based SE?

 Facts
SPL can employ multiple models simultaneously

• State charts, sequence diagrams, class diagrams, …

Models can have a large number of consistency rules
and instances

SPL usually involve large number of different products

 Because …
Large search space
No unique or optimal fixing solutions

5

Our ongoing work …

 Description
Finds fixing locations for single constraint instances
Uses basic search algorithm

 Relies on the notion of Safe Composition
Programming languages

• guarantee that all programs of a product line are
type safe

Uses propositional logic

6

Safe Composition

 Intuition
 Implementation constraint(s) (IMPf) must follow the product line

domain constraints (PLf)

 A SAT solver checks if one propositional formula is
satisfiable or not

 Our interest is verifying that all the product line members
satisfy an implementation constraint

PLf ⇒ IMPf¬()
Unsatisfiable = there is no product that violates the constraint

Satisfiable = there is at least one product that violates the constraint

7

Example PLf

VOD ⇔ true
VOD ⇔ Play
Record ⇒ VOD
TV ⇔ ¬Mobile ∧ Play
Mobile ⇔ ¬TV ∧ Play
Record ⇔ CD ∨ Card

∧
∧
∧

VOD

Record

TV Mobile

Play

CD Card

∧
∧

8

Requiring Rule Example

 Message action must be defined as an operation in receiver's class

Service

select()
go()
stop()

Feature TV

Feature Play

: Streamer: Service

go
play

IMPf ≡ Play ⇒ TV

¬(PLf ⇒ IMPf)VOD ⇔ true
VOD ⇔ Play
Record ⇒ VOD
TV ⇔ ¬Mobile ∧ Play
Mobile ⇔ ¬TV ∧ Play
Record ⇔ CD ∨ Card

SAT
∧
∧
∧

∧
∧

∧

Service

route()

stop()

Feature Mobile
TV Mobile

Play

products with Mobile

go()

V Mobile

9

Fixing inconsistencies

 Consistency Rule Instance (CRI) is a 4-tuple [F,RME,TS,FC] where:
 Requiring feature F = Play
 Requiring model element RME = playmsg

 Set of pairs (feature, required elements) TS = {(TV, playop)}
• Set of features in the pairs of TS as TS[feature].

 Faulty feature configuration that violates the consistency rule instance.
FC = [{VOD, Play, Mobile},{TV, Record, CD, Card}]]

 Pair-wise commonality
 Operation that receives a feature model P and two features F and G, and returns

the number of products that have both features.

 Question: where to add the required elements?
 Intuition: iteratively search fixing configurations choosing first those features with

higher commonality fix more configurations

10

Algorithm – Based on BFS

Input: CRI [F,RME,TS, FC] with FC≠ ∅conf , and PLf.
Output: Fixing set FS
FC’:=FC
FS:=TS[feature]
FSQ.enqueue(FS)
while FC’ ≠ ∅conf do

FSQ.dequeue(FS)
G:=maxCom(F,FC’,TS,FS)
FS:= FS U G
FC’:=SafeComposition(PLf, F,FS)
FSQ.enqueue(FS)

end while
return FS

Set of features that guarantees no
faulty configurations

Chooses a feature with maximum
pair-wise commonality

Applies basic Safe Composition

11

Findings and The Road Ahead

 Preliminary evaluation
Using 60 publicly available feature models, 6-94

features
On average fixing sets around 5 elements

 Future work
Consider multiple consistency instances
Assess other search alternatives
Research alternatives for Pair-wise Commonality

12

Acknowledgements

	�Searching the Variability Space to Fix Model Inconsistencies: �A Preliminary Assessment
	Introduction
	Motivation
	Why Search-Based SE?
	Our ongoing work …
	Safe Composition
	Example PLf
	Requiring Rule Example
	Fixing inconsistencies
	Algorithm – Based on BFS
	Findings and The Road Ahead
	Acknowledgements

